SMOOTH | Tang's research group@SYSU

唐健

职称: 教授,博士生导师

学位: 博士

毕业学校:德国维尔茨堡大学

所在学科:粒子物理与核物理

研究领域:超越标准模型新物理的研究、新型粒子探测器研发

主要经历

研究方向

交流与合作

中科院高能物理研究所,清华大学,上海交通大学,武汉大学,南开大学,日本大阪大学,德国美茵茨大学,美国弗吉尼亚理工大学等

技术专长

加速器中微子实验模拟与物理分析,新型液氩探测器研制,高纯锗探测器设计与信号模拟等

科研项目

代表论著

Inspirehep.net检索规则:exactauthor:Jian.Tang.
ArXiv的个人识别号:http://arxiv.org/a/tang_j_2

  1. Probing the doubly-charged Higgs with Muonium to Antimuonium Conversion Experiment, Chengcheng Han, Da Huang, Jian Tang*, Yu Zhang, arXiv: 2102.00758 [hep-ph].
  2. Constraints on cosmic-ray boosted DM in CDEX-10, Zhan-Hong Lei, Jian Tang, Bing-Long Zhang, arXiv: 2008.07116 [hep-ph].
  3. Non-standard interactions in SMEFT confronted with terrestrial neutrino experiments, Yong Du, Hao-Lin Li, Jian Tang, Sampsa Vihonen, Jiang-Hao Yu, arXiv: 2011.14292 [hep-ph]. JHEP 03 (2021), 019
  4. Global oscillation data analysis on the $3\nu$ mixing without unitarity, Zhuojun Hu, Jiajie Ling, Jian Tang, TseChun Wang, arXiv: 2008.09730 [hep-ph]. JHEP 01 (2021) 124
  5. Spin coating of TPB film on acrylic substrate and measurement of its wavelength shifting efficiency, Hang Yang, Zi-Feng Xu, Jian Tang, Yi Zhang, arXiv: 1911.08897 [physics.ins-det]. Nucl.Sci.Tech. 31 (2020) 3, 28
  6. Flavour Symmetry Embedded -- GLoBES (FaSE-GLoBES), Jian Tang, Tse-Chun Wang, arXiv: 2006.14886 [hep-ph]. Comp. Phys. Comm. 263 (2021) 107899
  7. Constraining sterile neutrinos by core-collapse supernovae with multiple detectors, Jian Tang, TseChun Wang, Meng-Ru Wu. arXiv: 2005.09168 [hep-ph]. JCAP 10 (2020), 038
  8. Prospects and requirements of opaque detectors in accelerator neutrino experiments. Jian Tang, Sampsa Vihonen, and TseChun Wang. arXiv: 2003.02792 [physics.ins-det]. Phys. Rev. D 102(2020)no.1, 013006.
  9. Study of a tri-direct littlest seesaw model at MOMENT. Jian Tang,TseChun Wang. arXiv: 1907.01371 [hep-ph]. Nucl. Phys. B952 (2020) 114915.
  10. Spin coating TPB film on acrylic substrate and measurement of its wavelength shifiting efficiency,Hang Yang,Zi-Feng Xu,Jian Tang* ,Yi Zhang, arXIv: 1911.08897 [physics.ins-det]. Nucl. Sci. Tech. 31 (2020) no.3, 28
  11. Precision measurements on dCP in MOMENT,Jian Tang, Sampsa Vihonen, Tse-Chun Wang. arXiv:1909.01548 [hep-ph] . Journal of High Energy Physics 1912 (2019) 130
  12. Non-standard interactions versus planet-scale neutrino oscillations,Wei-Jie Feng, Jian Tang*, Tse-Chun Wang, Yi-Xing Zhou. arXiv:1909.12674 [hep-ph]. Phys.Rev. D100 (2019) no.11, 115034
  13. Confronting tridirect CP -symmetry models with neutrino oscillation experiments,Gui-Jun Ding, Yu-Feng Li, Jian Tang*, Tse-Chun Wang. arXiv:1905.12939 [hep-ph]. Phys.Rev. D100(2019)no.5,055022.
  14. Invisible neutrino decays at the MOMENT experiment,Jian Tang,Tse-Chun Wang. arXiv:1811.05623 [hep-ph]. Journal of High Energy Physics 1904 (2019) 004.
  15. Extracting nuclear form factors with coherent neutrino scattering,Emilio Ciuffoli, Jarah Evslin, Qiang Fu, Jian Tang*. arXiv:1801.02166 [physics.ins-det]. Phys.Rev. D97 (2018)no.11,113003.
  16. Study of nonstandard charged-current interactions at the MOMENT experiment,Jian Tang,Yibing Zhang,arXiv:1705.09500 [hep-ph]. Phys.Rev. D97 (2018)no.3, 035018.
  17. Probing Direct and Indirect Unitarity Violation in Future Accelerator Neutrino Facilities,Jian Tang,Yibing Zhang,Yu-Feng Li,arXiv:1708.04909 [hep-ph]. Phys.Lett. B774 (2017) 217-224.
  18. TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution, JUNO Collaboration, Angel Abusleme et al. arXiv: 2005.08745 [physics.ins-det].
  19. Muon Flux Measurement at China Jinping Underground Laboratory, JNE Collaboration, Ziyi Guo et al., arXiv: 2007.15925 [physics.ins-det]. Chin.Phys.C 45 (2021) 2, 025001
  20. Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO, JUNO Collaboration Angel Abusleme (Chile U., Catolica) et al. arXiv: 2006.11760 [hep-ex]. Chin.Phys.C 45 (2021) 2, 023004
  21. Topological background discrimination in the PandaX-III neutrinoless double beta decay experiment. J. Galan et al.(PandaX-III Collaboration), J. Phys. G, 47(4):045108, 2020.
  22. Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB. R. Ajaj et al.(DEAP-3600 Collaboration), Phys. Rev. D, 100(2):022004, 2019.
  23. COMET Phase-I Technical Design Report. R. Abramishvili et al.(COMET Collaboration), PTEP, 2020(3):033C01, 2020.
  24. Design and Construction of the DEAP-3600 Dark Matter Detector. P.A. Amaudruz et al.(DEAP-3600 Collaboration), Astropart. Phys., 108:1–23, 2019.
  25. First results from the DEAP-3600 dark matter search with argon at SNOLAB. P.A. Amaudruz et al.(DEAP-3600 Collaboration), Phys. Rev. Lett., 121(7):071801, 2018.
  26. PandaX-III: Searching for neutrinoless double beta decay with high pressure136Xe gas time projection chambers. Xun Chen et al. (PandaX-III Collaboration), Sci. China Phys. Mech. Astron., 60(6):061011, 2017.
  27. Physics prospects of the Jinping neutrino experiment. John F. Beacom et al.(Jinping Collaboration), Chin. Phys. C, 41(2):023002, 2017.
  28. Neutrino Physics with JUNO. Fengpeng An et al.(JUNO Collaboration), J. Phys. G, 43(3):030401, 2016.

教学和科研相关荣誉